
MATH 579: Combinatorics
Exam 4 Solutions

1. Use methods of difference calculus to compute
∑25

i=1 i
4.

We first translate
∑25

i=1 i
4 =

∑26
1 x4δx. Now, we compute Stirling numbers of the second kind to find

x4 = S(4, 4)x4 + S(4, 3)x3 + S(4, 2)x2 + S(4, 1)x1 = x4 + 6x3 + 7x2 + x1. Hence our sum is
∑26

1 x4 + 6x3 +
7x2 +x1δx = 1

5x
5 + 6

4x
4 + 7

3x
3 + 1

2x
2|261 = 1

5265 + 6
4264 + 7

3263 + 1
2262− ( 1

515 + 6
414 + 7

313 + 1
212) = 2, 153, 645.

2. Let u, v be functions from Z to R. Prove that ∆(uv) = u∆v + Ev∆u.

We calculate Ev∆u + u∆v = v(x + 1)∆u + u(x)∆v = v(x + 1)(u(x + 1) − u(x)) + u(x)(v(x + 1) − v(x)) =
u(x+1)v(x+1)−u(x)v(x+1)+u(x)v(x+1)−u(x)v(x). Two terms cancel, leaving u(x+1)v(x+1)−u(x)v(x) =
∆(uv).

3. Let n ∈ N0. Calculate and simplify
∑n

0 x
1x10δx.

Warning: x1x10 6= x11.

Method 1: Write x1 = x = (x − 10 + 10). Hence,
∑n

0 x
1x10δx =

∑n
0 (x − 10 + 10)x10δx =

∑n
0 (x −

10)1x10δx +
∑n

0 10x10δx =
∑n

0 x
11δx + 10

∑n
0 x

10δx = 1
12x

12 + 10
11x

11|n0 = 1
132 (11n12 + 120n11 − (0 − 0)) =

1
132 (11n11(n− 11)1 + 120n11) = n11

132 (11(n− 11) + 120) = n11

132 (11n− 1).

Method 2: Summation by parts. Set u = x1,∆v = x10. We have ∆u = x0, v = 1
11x

11. Now,
∑n

0 x
1x10δx =

x1 1
11x

11|n0 −
∑n

0
1
11 (x + 1)11x0δx = (n·n11

11 − 0) − 1
11

∑n
0 (x + 1)11δx. We reindex, setting y = x + 1, getting

n·n11

11 −
1
11

∑n+1
1 y11δy = n·n11

11 −
1
11

1
12y

12|n+1
1 = n·n11

11 − ( (n+1)12

132 − 0
132 ) = n11

132 (12n− (n+ 1)) = n11

132 (11n− 1).

4. Let f, g be functions from Z to R. Suppose that ∆f = ∆g. Prove that there is some constant C such that
f(x) = g(x) + C.

Lemma: If ∆h = 0, then there is some constant C with h(x) = C.
Proof: Set C = h(0). We prove ∀n ∈ N0, h(n) = C by induction. Base case: h(0) = C already. Now, assume
that h(n) = C. We have 0 = ∆h = h(n + 1) − h(n), so h(n + 1) = h(n) = C. A similar proof works for all
negative integer n.

Now, set h(x) = f(x) − g(x). We have ∆h = f(x + 1) − g(x + 1) − (f(x) − g(x)) = (f(x + 1) − f(x)) −
(g(x + 1) − g(x)) = ∆f −∆g = 0 − 0 = 0. Hence, by lemma, there is some constant C with h(x) = C. So,
f(x)− g(x) = C, which rearranges to f(x) = g(x) + C.

5. Let n ∈ N. Calculate
∑n

1 Hxδx.

We rewrite
∑n

1 Hxδx =
∑n

1 x
0Hxδx, and use summation by parts. Set u = Hx,∆v = x0. We have ∆u = x−1

and v = x1. Hence,
∑n

1 x
0Hxδx = x1Hx|n1 −

∑n
1 (x+1)1x−1δx = (nHn−1H1)−

∑n
1 x

0δx = nHn−1−x1|n1 =
nHn − 1− (n− 1) = nHn − n.

6. Recall that xm =

{
x(x+ 1) · · · (x+m− 1) m ≥ 0

1
(x−1)(x−2)···(x+m) m ≤ 0

. Define the “other” difference operator ∆′ as ∆′f =

f(x)− f(x− 1). Compute and simplify ∆′xm.

For m ≥ 1, we have ∆′xm = x(x+ 1) · · · (x+m− 2)(x+m− 1)− (x− 1)(x) · · · (x+m− 2) = x(x+ 1) · · · (x+

m− 2)[x+m− 1− (x− 1)] = mxm−1.

For m ≤ 0, we have ∆′xm = 1
(x−1)(x−2)···(x+m) −

1
(x−2)(x−3)···(x+m)(x+m−1) = x+m−1

(x−1)(x−2)···(x+m)(x+m−1) −
x−1

(x−1)(x−2)···(x+m)(x+m−1) = m
(x−1)(x−2)···(x+m)(x+m−1) = mxm−1.

Hence, in both cases, the result is ∆′xm = mxm−1.


