MATH 579: Combinatorics

Exam 4 Solutions

1. Use methods of difference calculus to compute $\sum_{i=1}^{25} i^{4}$.

We first translate $\sum_{i=1}^{25} i^{4}=\sum_{1}^{26} x^{4} \delta x$. Now, we compute Stirling numbers of the second kind to find $x^{4}=S(4,4) x^{\underline{4}}+S(4,3) x^{\underline{3}}+S(4,2) x^{\underline{2}}+S(4,1) x^{\underline{1}}=x^{\underline{4}}+6 x^{\underline{3}}+7 x^{\underline{2}}+x^{\underline{1}}$. Hence our sum is $\sum_{1}^{26} x^{\underline{4}}+6 x^{\underline{3}}+$ $7 x^{\underline{2}}+x^{\underline{1}} \delta x=\frac{1}{5} x^{\underline{5}}+\frac{6}{4} x^{\underline{4}}+\frac{7}{3} x^{\underline{3}}+\left.\frac{1}{2} x^{2}\right|_{1} ^{26}=\frac{1}{5} 26^{\underline{5}}+\frac{6}{4} 26^{\underline{4}}+\frac{7}{3} 26^{\underline{3}}+\frac{1}{2} 26^{\underline{2}}-\left(\frac{1}{5} 1^{\underline{5}}+\frac{6}{4} 1^{\underline{4}}+\frac{7}{3} 1^{\underline{3}}+\frac{1}{2} 1^{\underline{2}}\right)=2,153,645$.
2. Let u, v be functions from \mathbb{Z} to \mathbb{R}. Prove that $\Delta(u v)=u \Delta v+E v \Delta u$.

We calculate $E v \Delta u+u \Delta v=v(x+1) \Delta u+u(x) \Delta v=v(x+1)(u(x+1)-u(x))+u(x)(v(x+1)-v(x))=$ $u(x+1) v(x+1)-u(x) v(x+1)+u(x) v(x+1)-u(x) v(x)$. Two terms cancel, leaving $u(x+1) v(x+1)-u(x) v(x)=$ $\Delta(u v)$.
3. Let $n \in \mathbb{N}_{0}$. Calculate and simplify $\sum_{0}^{n} x \underline{\underline{1}} x \underline{10} \delta x$.

Warning: $x \underline{\underline{1}} \underline{\underline{10}} \neq x \underline{11}$.
Method 1: Write $x^{\underline{1}}=x=(x-10+10)$. Hence, $\sum_{0}^{n} x \underline{\underline{1}} x \underline{10} \delta x=\sum_{0}^{n}(x-10+10) x \underline{10} \delta x=\sum_{0}^{n}(x-$ 10) ${ }^{\underline{1}} x \underline{10} \delta x+\sum_{0}^{n} 10 x \underline{10} \delta x=\sum_{0}^{n} x \underline{11} \delta x+10 \sum_{0}^{n} x \underline{10} \delta x=\frac{1}{12} x \underline{12}+\left.\frac{10}{11} x \underline{11}\right|_{0} ^{n}=\frac{1}{132}(11 n \underline{12}+120 n \underline{11}-(0-0))=$ $\frac{1}{132}\left(11 n \underline{\underline{11}}(n-11)^{\underline{1}}+120 n \underline{11}\right)=\frac{n-11}{132}(11(n-11)+120)=\frac{n \underline{11}}{132}(11 n-1)$.
Method 2: Summation by parts. Set $u=x^{\underline{1}}, \Delta v=x \underline{10}$. We have $\Delta u=x \underline{\underline{0}}, v=\frac{1}{11} x \underline{11}$. Now, $\sum_{0}^{n} x-x \underline{10} \delta x=$ $\left.x^{\frac{1}{11}} \frac{1}{11} x^{\underline{11}}\right|_{0} ^{n}-\sum_{0}^{n} \frac{1}{11}(x+1)^{\underline{11}} x^{\underline{0}} \delta x=\left(\frac{n \cdot n^{\underline{11}}}{11}-0\right)-\frac{1}{11} \sum_{0}^{n}(x+1) \underline{\underline{11}} \delta x$. We reindex, setting $y=x+1$, getting $\frac{n \cdot n^{\underline{11}}}{11}-\frac{1}{11} \sum_{1}^{n+1} y^{\underline{11}} \delta y=\frac{n \cdot n^{11}}{11}-\left.\frac{1}{11} \frac{1}{12} y^{\underline{12}}\right|_{1} ^{n+1}=\frac{n \cdot n \underline{11}}{11}-\left(\frac{(n+1) \underline{12}}{132}-\frac{0}{132}\right)=\frac{n^{11}}{132}(12 n-(n+1))=\frac{n^{\underline{11}}}{132}(11 n-1)$.
4. Let f, g be functions from \mathbb{Z} to \mathbb{R}. Suppose that $\Delta f=\Delta g$. Prove that there is some constant C such that $f(x)=g(x)+C$.
Lemma: If $\Delta h=0$, then there is some constant C with $h(x)=C$.
Proof: Set $C=h(0)$. We prove $\forall n \in \mathbb{N}_{0}, h(n)=C$ by induction. Base case: $h(0)=C$ already. Now, assume that $h(n)=C$. We have $0=\Delta h=h(n+1)-h(n)$, so $h(n+1)=h(n)=C$. A similar proof works for all negative integer n.
Now, set $h(x)=f(x)-g(x)$. We have $\Delta h=f(x+1)-g(x+1)-(f(x)-g(x))=(f(x+1)-f(x))-$ $(g(x+1)-g(x))=\Delta f-\Delta g=0-0=0$. Hence, by lemma, there is some constant C with $h(x)=C$. So, $f(x)-g(x)=C$, which rearranges to $f(x)=g(x)+C$.
5. Let $n \in \mathbb{N}$. Calculate $\sum_{1}^{n} H_{x} \delta x$.

We rewrite $\sum_{1}^{n} H_{x} \delta x=\sum_{1}^{n} x^{0} H_{x} \delta x$, and use summation by parts. Set $u=H_{x}, \Delta v=x$. We have $\Delta u=x \underline{-1}$ and $v=x^{\underline{1}}$. Hence, $\sum_{1}^{n} x^{\underline{0}} H_{x} \delta x=\left.x^{\underline{1}} H_{x}\right|_{1} ^{n}-\sum_{1}^{n}(x+1)^{\underline{1}} x \underline{-1} \delta x=\left(n H_{n}-1 H_{1}\right)-\sum_{1}^{n} x-0.0 x=n H_{n}-1-\left.x^{\underline{1}}\right|_{1} ^{n}=$ $n H_{n}-1-(n-1)=n H_{n}-n$.
6. Recall that $x^{\bar{m}}=\left\{\begin{array}{ll}x(x+1) \cdots(x+m-1) & m \geq 0 \\ \frac{1}{(x-1)(x-2) \cdots(x+m)} & m \leq 0\end{array}\right.$. Define the "other" difference operator Δ^{\prime} as $\Delta^{\prime} f=$ $f(x)-f(x-1)$. Compute and simplify $\Delta^{\prime} x^{\bar{m}}$.
For $m \geq 1$, we have $\Delta^{\prime} x^{\bar{m}}=x(x+1) \cdots(x+m-2)(x+m-1)-(x-1)(x) \cdots(x+m-2)=x(x+1) \cdots(x+$ $m-2)[x+m-1-(x-1)]=m x^{\overline{m-1}}$.
For $m \leq 0$, we have $\Delta^{\prime} x^{\bar{m}}=\frac{1}{(x-1)(x-2) \cdots(x+m)}-\frac{1}{(x-2)(x-3) \cdots(x+m)(x+m-1)}=\frac{x+m-1}{(x-1)(x-2) \cdots(x+m)(x+m-1)}-$ $\frac{x-1}{(x-1)(x-2) \cdots(x+m)(x+m-1)}=\frac{m}{(x-1)(x-2) \cdots(x+m)(x+m-1)}=m x^{\overline{m-1}}$.
Hence, in both cases, the result is $\Delta^{\prime} x^{\bar{m}}=m x^{\overline{m-1}}$.

